-
结晶学 编辑
结晶学是研究晶体的发生、生长、外部形态、内部结构及物理性质的科学。在早期,结晶学的主要研究对象是自然界中生长的矿物晶体。长久以来,结晶学便是矿物学的一部分。矿物学家为了研究矿物的需要才研究结晶学,而结晶学也在研究矿物时得到了发展。
中文名:结晶学
外文名:crystallography
又称:晶体学
研究:矿物晶体的生成和变化的科学
研究内容:包括外部形态的几何性质
研究晶体的外部形貌、化学组成、内部结构、物理性质、生成和变化,以及它们相互间关系的一门科学。
早期只是作为矿物学的一个分支,其研究对象亦局限于天然的矿物晶体。19世纪,研究范围逐步扩大到矿物以外的各种晶体,结晶学才逐渐脱离矿物学而成为一门独立的学科。
(1)晶体生成学(crystallogeny):研究天然及人工晶体的发生、成长和变化的过程与机理,以及控制和影响它们的因素。
(2)几何结晶学(gometrical crystallography):研究晶体外表几何面体的形状及其间的规律性。
(3)晶体结构学(crystallology):研究晶体内部结构中质点排而的规律性,以及晶体结构的不完善性。
(4)晶体化学(crystallochemistry, 亦称结晶化学):研究晶体的化学组成与晶体结构以及晶体的物理、化学性质间关系的规律性。
(5)晶体物理学(crystallophysics):研究晶体的各项物理性质及其产生的机理。
现代晶体学研究主要通过分析晶体对各种电磁波束或粒子束的衍射图像来进行。辐射源除了最常用的X射线外,还包括电子束和中子束(根据德布罗意理论,这些基本粒子都具有波动性,可以表现出和光波类似的性质)。晶体学家直接用辐射源的名字命名各种标定方法,如X射线衍射(常用英文缩写XRD),中子衍射和电子衍射。
以上三种辐射源与晶体学试样的作用方式有很大区别:X射线主要被原子(或离子)的最外层价电子所散射;电子由于带负电,会与包括原子核和核外电子在内的整个空间电荷分布场发生相互作用;中子不带电且质量较大,主要在与原子核发生碰撞时(碰撞的概率非常低)受到来自原子核的作用力;与此同时,由于中子自身的自旋磁矩不为零,它还会与原子(或离子)磁场相互作用。这三种不同的作用方式适应晶体学中不同方面的研究。
晶体具有高度的有序性和周期性,是分析固体微观结构的理想材料。以X射线衍射为例,被某个固体原子(或离子)的外层电子散射的X射线光子太少,构成的辐射强度不足以被仪器检测到。但由晶体中满足一定条件(布拉格定律,Bragg's law)的多个晶面上的原子(或离子)散射的X射线由于可以发生相长干涉,将可能构成足够的强度,能被照相底片或感光仪器所记录 。
晶体中的晶向用方括号括起的三个最小互质坐标值来标出,譬如:;
在对称操作中等价的一组晶向称为晶向族,用尖括号括起的三个最小互质坐标值来标出,譬如 < 100 > 。在正方晶系中,上述晶向族中包含的晶向有六个晶向;
晶面的密勒指数用圆括号括起,如(100)。在正方晶系中,(hkl) 晶面垂直于 晶向;
与晶向族的定义类似,在对称操作中等价的一组晶面称为晶面族,用花括号括起,如{100} 。
晶体获得后,便可以通过衍射方法对其进行研究。尽管当今许多大学和科研单位均使用各种小型X射线源进行晶体学研究,但理想的X射线源却是通常体积庞大的同步加速器(同步辐射光源)。同步辐射X射线波谱宽、强度和准直度极高,应用于晶体学研究可大大提高精确度和研究效率。
从晶体的衍射花样推测晶体结构的过程称为衍射花样的标定,涉及较繁琐的数学计算,常常要根据和衍射结果的比较对模型进行反复的修改(该过程一般称为modeling and refinement)。在这个过程中,晶体学家要计算出可能晶格结构的衍射花样,并与实际得到的花样进行对比,综合考虑各种因素后进行多次筛选和修正,最终选定一组(通常不止一种)与实验结果最大程度吻合的猜测作为推测的结果。这是一个异常繁琐的过程,但如今由于电脑的广泛应用,标定工作已经大大简化了。
除上述针对晶体的衍射分析方法外,纤维和粉末也可以进行衍射分析。这类试样虽然没有单晶那样的高度周期性,但仍表现出一定的有序度,可利用衍射分析得到其内部分子的许多信息。譬如,DNA分子的双螺旋结构就是基于对纤维试样的X射线衍射结果的分析而提出,最终得到验证的。
除晶体结构因素外,晶体学还能确定其他一些影响材料物理性质的因素。譬如:粘土中含有大量细小的鳞片状矿物颗粒。这些颗粒容易在自身平面方向作相对滑动,但在垂直自身平面的方向则极难发生相对运动。这些机制可以利用晶体学中的织构测量进行研究。
晶体学在材料科学中的另一个应用是物相分析。材料中不同化学成分或同一种化学成分常常以不同物相的形式出现,每一相的原子结构和物理性质都不相同,因此要确定或涉及材料的性质,相分析工作十分重要。譬如,纯铁在加热到912℃时,晶体结构会发生从体心立方(body-centered cubic,简称bcc)到面心立方(face-centered cubic,简称fcc)的相转变,称为奥氏体转变。由于面心立方结构是一种密堆垛结构,而体心立方则较松散,这解释了铁在加热过912℃后体积减小的现象。典型的相分析也是通过分析材料的X射线衍射结果来进行的。
晶体学理论涉及各种空间点阵对称关系的枚举,因此常需借助数学中的群论进行研究。
中子射线晶体学可以与X射线晶体学互补,获得X射线晶体学中经常缺失的生物大分子氢原子位置的信息。
电子晶体学应用在某些蛋白质,如膜蛋白(membrane protein)和病毒壳体蛋白(viral capsid)结构的研究中。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。