-
X射线晶体学 编辑
X射线晶体学是一门利用X射线来研究晶体中原子排列的学科。更准确地说,利用电子对X射线的散射作用,X射线晶体学可以获得晶体中电子密度的分布情况,再从中分析获得原子的位置信息,即晶体结构。对很多余结构相关的问题如整体折叠、配体或底物结合、作用的原子具体信息提供可靠的答案。运用X射线晶体学可以了解大分子如蛋白质与DNA的结构和功能。分子结构的精确信息是理性药物设计和基于结构功能研究的先决条件。
中文名:X射线晶体学
外文名:X-ray macromolecularcrystallography
含义:利用X射线来研究晶体中原子排列
领域:理学
研究对象:蛋白质晶体
晶体学可以对很多余结构相关的问题如整体折叠、配体或底物结合、作用的原子具体信息提供可靠的答案。运用X射线晶体学 可以了解大分子如蛋白质与DNA的结构和功能。分子结构的精确信息是理性药物设计和基于结构功能研究的先决条件。
②结晶
③衍射、数据收集
④确定蛋白结构
衍射数据→数据处理→相位解析→建模→模型修正→模型检验
⑤理解结构与功能的相互关系
显微镜下的蛋白质晶体
原理:
蛋白质晶体 内部结构为三维空间周期、有序、重复排列,要求每个结晶重复单位(分子或其复合体)的化学组成与分子构象是均一的。
方法:
为了获得可供衍射的单晶,就需要将纯化后的生物样品进行晶体生长。晶体生长的方法有很多,如气相扩散法、液相扩散法、温度渐变法、真空升华法、对流法等等,而目前应用最广泛的晶体生长方法是气相扩散法。气相扩散法又可以分为悬滴法、坐滴法、三明治法、油滴法和微量透析法。其中,悬滴法的使用频率最高。
(以上方法都属于化学方法,通常,研究凝聚态物理的用得最多的是区熔法,以多晶材料为基础通过局部施加高温使其部分熔化后再结晶,从而逐渐得到大块的晶体,高分子材料通常不能承受过高温度,所以无法使用这种方法)
在获得初步的晶体生长条件后,往往需要对晶体生长条件进行优化,包括调整沉淀剂浓度、pH值、样品浓度、温度、离子强度等。
衍射数据(包括衍射点的位置和强度)的记录多采用像板或CCD探测器。
数据分析
对记录到的衍射数据进行分析,可以获得晶体所属的晶系和对应的布拉维格子以及每个衍射点在倒易空间上的miller指标和对应的强度。
指标化
强度积分、合并、振幅的还原
晶体学参数测定的若干问题讨论
常用的数据收集与处理程序
蛋白质晶体 衍射强度数据质量的评估
晶体结构解析
由于晶体衍射实际上是晶体中每个原子的电子密度对X射线的衍射的叠加,衍射数据反映的是电子密度进行傅立叶变换的结果,用结构因子来表示。通过对结构因子进行反傅立叶变换,就可以获得晶体中电子密度的分布。而结构因子是与波动方程相关的,计算结构因子需要获得波动方程中的三个参数,即波的振幅、频率和相位。振幅可以通过每个衍射点的强度直接计算获得,频率也是已知的,但相位无法从衍射数据中直接获得,因此就产生了晶体结构解析中的“相位问题(phase problem)”。
晶体结构解析中所采用的解决相位问题的方法有直接法和Patterson法。而对于解析生物大分子结构的主要方法有分子置换法、同晶置换法和反常散射法。
多重同晶置换(MIR)
把对X射线散射能力大的重金属原子作为标识原子。这种置换入重原子的大分子应与无重原子时的原晶体有相同的晶胞参数和空间群,且绝大多数原子的位置相同,故称同晶置换。从这些含重原子晶体的衍射数据,利用基于派特逊法 的方法可解出重原子的位置,据此算出其结构因子和相角,进而利用相角关系计算出没有重原子的原晶体的相角,解出结构。经常使用不只一种重原子进行置换,以得几种同晶置换衍生物, 称多对同晶置换法。
多波长反常散射(MAD)
晶体衍射中有一条弗里德耳定律, 就是说不论晶体中是否存在对称中心,在晶体衍射中总存在着对称中心,也即有FHKL=FHKL。但是当使用的X射线波长与待测样品中某一元素的吸收边靠近时,就不遵从上述定律,也即FHKL≠FHKL。这是由电子的反常散射 造成的, 利用这一现象可以解决待测物的相角问题。 一般, 这一方法常与重原子同晶置换法结合使用。在收得同晶置换物的衍射数据后, 改变入射线波长至靠近重原子的吸收边处,再次收集数据,这套数据是存在反常散射的,可利用这两套数据来求位相。有如多同晶置换法,如采用几个不同波长的X射线,对所含不同元素收集几套反常散射数据,则可得更正确、更完整的相位信息,是为多波长反常衍射法(MAD)。
两者的相同点:都是利用重原子的特性来解决相角问题。
两者的差别:MAD是基于MIR的基础之上的,采用多种波长完备所需的信息。
蛋白质 | 蛋白质复合物 | 细胞 | 组织 | 个体 |
10-9m | 10-8m | 10-5m | 10-2m | 10-1m |
X射线、核磁NMR、质谱MS | X射线、核磁、质谱 、电镜 | 光学显微镜、电镜 、软X射线谱 | 光学显微镜、电镜、红外光谱 | 磁共振成像MRI、电子发射断层成像PET、单光子发射断层成像SPECT |
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。