-
直接内存访问 编辑
直接内存访问(DMA,Direct Memory Access)是一些计算机总线架构提供的功能,它能使数据从附加设备(如磁盘驱动器)直接发送到计算机主板的内存上。
直接内存访问的另一个选择是程控输入输出(PIO)接口。在程控输入输出接口中,设备之间所有的数据传输都要通过处理器。ATA/IDE接口的新协议是Ultra DMA,它提供的突发数据传输速率可达33兆字节每秒。具有Ultra DMA/33的硬盘驱动器也支持PIO模式1、3、4和多字DMA模式2(每秒16.6兆字节)。
DMA传输原理
一个完整的DMA传输包括DMA请求、DMA响应、DMA传输和DMA结束4个步骤。DMA传输原理如图1所示,图中I/O设备为源端设备,由I/O设备向目的端设备(存储器)传输数据,其DMA的基本传输过程如下:①CPU对总线控制器进行初始化,制定工作内存空间,读取DMAC中的寄存器信息,了解DMAC的传输状态;②I/O设备向DMAC发送DMA请求(DMA request,DREQ),DMAC收到此信号后,向CPU发出总线保持信号(HOLD); ③CPU当前总线周期执行结束后发出总线响应信号保持确认(hold acknowledgment,HLDA); ④DMAC收到总线授权后,向I/O设备发送DMA响应信号DMA确认(DMA acknowledgment,DACK),表示允许I/O设备进行DMA传送;⑤开始传输时,DMAC首先从源地址读取数据并存入内部缓存中,再写入目的地址,完成总线数据从源地址到目的地址的传输;⑥DMA传输完成后,DMAC向CPU发出结束信号,释放总线,使CPU重新获得总线控制权。一次DMA传输只需要执行一个DMA周期,相当于一个总线读/写周期,因而能够满足外设数据高速传输的需要。DMA是所有现代电脑的重要特色,它允许不同速度的硬件设备来沟通,而不需要依于中央处理器的大量中断负载。否则,中央处理器需要从来源把每一片段的数据复制到寄存器,然后把它们再次写回到新的地方。在这个时间中,中央处理器对于其他的工作来说就无法使用。
DMA传输常使用在将一个内存区从一个设备复制到另外一个。当中央处理器初始化这个传输动作,传输动作本身是由DMA控制器来实行和完成。典型的例子就是移动一个外部内存的区块到芯片内部更快的内存去。像是这样的操作并没有让处理器工作拖延,使其可以被重新调度去处理其他的工作。DMA传输对于高性能嵌入式系统算法和网络是很重要的。 举个例子,个人电脑的ISADMA控制器拥有8个DMA通道,其中的7个通道是可以让计算机的中央处理器所利用。每一个DMA通道有一个16位地址寄存器和一个16位计数寄存器。要初始化数据传输时,设备驱动程序一起设置DMA通道的地址和计数寄存器,以及数据传输的方向,读取或写入。然后指示DMA硬件开始这个传输动作。当传输结束的时候,设备就会以中断的方式通知中央处理器。
"分散-收集"(Scatter-gather)DMA允许在一次单一的DMA处理中传输数据到多个内存区域。相当于把多个简单的DMA要求串在一起。同样,这样做的目的是要减轻中央处理器的多次输出输入中断和数据复制任务。 DRQ意为DMA要求;DACK意为DMA确认。这些符号一般在有DMA功能的电脑系统硬件概要上可以看到。它们表示了介于中央处理器和DMA控制器之间的电子信号传输线路。
相同的,如果外部设备写入新的值到外部内存内,则中央处理器若访问缓存时则会访问到尚未更新的数据。
这些问题可以用两种方法来解决:
缓存同调系统(Cache-coherent system):以硬件方法来完成,当外部设备写入内存时以一个信号来通知缓存控制器某内存地址的值已经过期或是应该更新数据。
非同调系统(Non-coherent system):以软件方法来完成,操作系统必须确认缓存读取时,DMA程序已经开始或是禁止DMA发生。
第二种的方法会造成DMA的系统负担。
RDMA支持零复制网络传输,通过使网络适配器直接在应用程序内存间传输数据,不再需要在应用程序内存与操作系统缓冲区之间复制数据。这种传输不需要中央处理器、CPU缓存或上下文交换参与,并且传输可与其他系统操作并行。当应用程序执行RDMA读取或写入请求时,应用程序数据直接传输到网络,从而减少延迟并实现快速的消息传输。
但是,这种策略也表现出目标节点不会收到请求完成的通知(单向通信)等相关的若干问题。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。