-
伽罗瓦理论 编辑
伽罗瓦理论,是用群论的方法来研究代数方程的解的理论。在19世纪末以前,解方程一直是代数学的中心问题。早在古巴比伦时代,人们就会解二次方程。在许多情况下,求解的方法就相当于给出解的公式。但是自觉地、系统地研究二次方程的一般解法并得到解的公式,是在公元9世纪的事。三次、四次方程的解法直到16世纪上半叶才被发现。从此以后、数学家们转向求解五次以上的方程。伽罗瓦的思想对代数学的发展起了决定性的影响,其影响几乎长达整整一个世纪。
中文名:伽罗瓦理论
外文名:Galois theory
学科:数学
释义:用群论方法研究代数方程解的理论
提出者:伽罗瓦
提出时间:1832年
定义:用群论的方法来研究代数方程的解的理论
1828年,年仅17岁的伽罗瓦写了“关于五次代数方程的解法问题”等两篇论文,送到了法国科学院。但这篇论文不受重视,被法国科学院的审稿人之一柯西(Cauchy,A.-L.)遗失了。1831年,伽罗瓦又完成了“关于用根式解方程的可解性条件”,院士泊松(Poisson,S.-D.)的审查意见是“完全不能理解,予以退回”。不满21岁的伽罗瓦在决斗前夕将草稿寄给了他的朋友。14年后,1846年,刘维尔(Liouville,J.)在他创办的《纯粹数学和应用数学》杂志上首次发表了伽罗瓦的部分文章。第一个全面介绍伽罗瓦理论的是若尔当(Jordan,M.E.C.),他是在1870年出版的《论置换群与代数方程》一书给出了伽罗瓦应用置换群这一工具,不仅证明一般高于四次的代数方程不能用根式求解,而且还建立了具体数字代数方程可用根式解的判别准则。用伽罗瓦理论很容易地否定回答所谓几何三大难题。
伽罗瓦理论在1928年已由克鲁尔(Krull,W.)推广到无限可分正规扩域上,伽罗瓦理论不仅对近代代数学产生了深远影响,也渗透到数学的其他许多分支 。
伽罗瓦
伽罗瓦从1828年开始研究代数方程理论(当时他并不了解阿贝尔的工作),他试图找出为了使一个方程存在根式解,其系数所应满足的充分和必要条件。到1832年他完全解决了这个问题。在他临死的前夜,他将结果写在一封信中,留给他的一位朋友。1846年他的手稿才公开发表。伽罗瓦完全解决了高次方程的求解问题,他建立了用根式构造代数方程的根的一般原理,这个原理是用方程的根的某种置换群的结构来描述的,后人称之为“伽罗瓦理论”。伽罗瓦理论的建立,不仅完成了由拉格朗日、鲁菲尼、阿贝尔等人开始的研究,而且为开辟抽象代数学的道路建立了不朽的业绩。伽罗瓦理论发展的另一条路线,也是由戴德金开创的,即建立非交换环的伽罗瓦理论。1940年前后,美国数学家雅各布森开始研究非交换环的伽罗瓦理论,并成功地建立了交换域的一般伽罗瓦理论。伽罗瓦理论还特别对尺规作图问题给出完全的刻画。人们已经证明:这种作图问题可归结为解有理数域上的某些代数方程。这样一来,一个用直尺和圆规作图的问题是否可解,就转化为研究相应方程的伽罗瓦群的性质。
域的正规可分扩张定义为伽罗瓦扩张。
若K/F为伽罗瓦扩张,K上的F-自同构的集合构成一个群,定义为伽罗瓦群,记为Gal(K/F)。
对于H是Gal(K/F)的子群,称K中在H中任意元素作用下不动元的集合为H的不动域,这是一个中间域。
对于伽罗瓦扩张,扩张的中间域和伽罗瓦群的子群有一一对应的关系。
F⊂E⊂K形式的伽罗瓦扩张,E/F是正规扩张当且仅当Gal(K/E)是Gal(K/F)的正规子群。
在特征为0的域上,多项式的根可用根式解当且仅当其分裂域扩张的伽罗瓦群是可解群。广义上的伽罗瓦理论还包括尺规作图,诺特方程,循环扩张,库默尔理论等内容。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。