-
核化学 编辑
核化学,是用化学方法或化学与物理相结合的方法研究原子核及核反应的学科。 核化学主要研究核性质、核结构、核转变的规律以及核转变的化学效应、奇特原子化学,同时还包括有关研究成果在各个领域的应用。核化学、放射化学和核物理,在内容上既有区别却又紧密地联系和交织在一起。
1919年卢瑟福等发现由天然放射性核素发射的α粒子引起的原子核反应,导致1934年小居里夫妇制备出第一个人工放射性核素—磷30。由于中子的发现和粒子加速器的发展,通过核反应产生的人工放射性核素的数目逐年增加,而1938年哈恩等发现原子核裂变更加速了这种趋势,并且为后来的核能利用开辟了道路。
此外,核谱学的工作也有相应的发展。由于粒子加速器、反应堆、各种类型的探测器和分析器、质谱仪、同位素分离器及计算机技术等的发展,核化学研究的范围和成果还在继续扩展和增加,如质量大于氦核的重离子引起的深度非弹性散射反应研究,107、108、109号元素的合成,双质子放射性和碳放射性的发现等。另外,核化学与核技术应用于化学、生物学、医学、地学、天文学和环境科学等方面,已取得了令人瞩目的进展。
核化学主要研究核性质、核结构、核转变的规律以及核转变的化学效应、奇特原子化学,同时还包括有关研究成果在各个领域的应用。核化学、放射化学和核物理,在内容上既有区别却又紧密地联系和交织在一起。
核有不稳定和稳定之分,前者又称放射性核,放射性核经过衰变(如发射氦核、电子、光子、中子或质子,俘获电子和自发裂变等)最终成为稳定核。任何衰变过程必须遵从能量守恒、动量守恒、角动量守恒和量子力学方面的一些规则。核的不稳定性有程度上的差别,它表现为寿命或半衰期的长短,寿命越短,不稳定性越高,反之亦然。
除了衰变方式和稳定性外,核的其他性质有电荷、质量(包括能量)、半径、自旋、磁矩、电四极矩、宇称和统计性质等。另外,核不仅可处于相对稳定的基态,还可以处于能量稍高的激发态。处于激发态的核也有以上各种性质,一般以发射光子的方式到达基态。核性质反映了核的结构,通过对核性质的研究,可以更深入地认识原子核的本质。
核的转变包括原子核在其他原子核或粒子作用下发生的各种变化(即核反应)和不稳定的原子核自发发生的核衰变。核反应是取得新核的主要途径。
反应堆产生的中子引起的核反应是新核的一个重要来源,它主要包括中子俘获反应和中子裂变反应。这些反应产生的裂片核(包括目前尚未发现的新核)都处于β稳定线的丰中子的一面,并以发射电子,或随后再发射一个中子的方式衰变。
新核还可以用各类加速器所产生的不同能量的离子和电子,以及由核反应所产生的次级粒子轰击各种靶核来产生。根据轰击粒子的不同可将核反应分为中子核反应带电粒子核反应、光核反应和重离子核反应等。按轰击粒子的能量又可将它们分为高、中和低能核反应。
目前每个核子的能量高于一百亿电子伏的粒子称为高能粒子,高于一亿电子伏的为中能粒子,低于一亿电子伏以下的为低能粒子。但是,这类规定并不绝对,对于各种轰击粒子如重离子、电子和次级粒子,能量高低的含义有所不同。
根据以上两种途径,现已找到2000多种不稳定核素,但仍有很多尚待发现。它们的寿命极短,需要产物核的快速传输、快速化学分离和在线同位素分离技术才能鉴定它们。重离子核反应是发现新元素的主要途径。
此外,对核反应的研究还包括测量各种核反应截面及其与轰击粒子的能量的关系(称激发函数),测量出射粒子和产物核的质量、电荷、能量和角度(方向)的分布情况,并由此探索核反应的机理。这是深入了解核力和核子在核内运动和相互作用规律的重要方法。
在核转变中,产物核由于动量守恒获得反冲动能,这一能量足以使起始核所属原子与周围原子之间的化学键断裂,从而形成脱离原来分子的具有一定动能的热原子。在核衰变中,有时会因电子震脱或空穴级联而引起化学变化。核转变过程中产生的热原了与周围介质之间所起的化学变化就是热原子化学研究的内容。
核化学研究成果已广泛应用于各个领域。例如利用测定由中子俘获反应的中子活化分析,可较准确地测定样品中50种以上元素的含量,并且灵敏度一般很高。该法已广泛应用于材料科学、环境科学、生物学、医学、地学、宇宙化学、考古学和法医学等领域。
一些短寿命(特别是发射正电子)核素的放射性标记化合物广泛应用于医学。热原子化学方法可用于制备某些标记化合物。正电子湮没技术已用于材料科学及化学动力学等方面的研究。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。