-
气阀 编辑
气阀是压缩机中用来控制气体进出气缸的部件。主要由阀座、阀片、弹簧与升程限制器组成。阀片与阀座之间的升启高度或闭合决定了气体通道的大小和密闭。弹簧主要用以推动阀片关闭,也可减轻阀片开启时与升程限制器的撞击。升程限制器可限制阀片的升程并可承座弹簧;气阀阀片的启闭由气缸内、外气体压差与弹簧力控制,无需其他驱动机构,故称自动阀。
中文名:气阀
外文名:air valve
要求:阻力损失小、关闭及时迅速等
作用:压缩机中的重要部件
材料:具韧性好、耐磨、耐腐蚀性能
学科:机械工程
气阀
从气阀工作原理来看,气阀工作性能将直接影响压缩机气缸的工作,因此,对气阀有如下要求:(1)阻力损失小
气阀阻力损失大小与气流的阀隙速度及弹簧力大小有关。气速越高,能量损失越大;弹簧力过大,阻力损失也大,其大小按气阀运动规律的合理性准则设计确定。
(2)气阀关闭及时、迅速
关闭时不漏气,以提高机器的效率,延长使用期。
(3)寿命长、工作可靠。
限制气阀寿命的主要因素是阀片及弹簧质量,一般对长期连续运转的压缩机,希望寿命达8000小时以上;对移动式、短期或间歇运转的压缩机,要求可稍低些。
(4)形成的余隙容积要小
(5)噪声小
此外,还要求气阀装配、安装、维修方便,加工容易等。
活塞式压缩机一般都采用“自动阀”,就是气阀的开启与关闭是依靠阀片两边的压力差实现的,没有其它的驱动机构。
图1气阀结构示意图
如图1所示为环状进气阀示意图。气阀主要由阀座1、阀片2、弹簧3、升程限制器4和将它们组为一体的螺栓,螺母等组成。排气阀的结构与吸气阀基本相同,两者仅是阀座与升程限制器的位置互换,吸气阀升程限制器靠近气缸里侧,排气阀则是阀座靠近气缸里侧。环状阀因其阀片为薄圆环而得名阀座与升程限制器上都有环形或孔形通道,供气体通过。阀片与阀座上的密封口贴合形成密封。升程限制器上有导向凸台,对阀片升降起导向作用。图2压缩机中气阀运动曲线
如图2为某压缩机中气阀阀片运动曲线。其中1为吸气阀的运动曲线,2为排气阀的运动曲线。纵坐标代表升程h,横坐标为曲轴的转角(或时间)。从图2中可以看出气阀的开启和关闭都是比较快的。并且气阀的开启速度总是要高于气阀的关闭速度,这是因为气阀的开启过程是在活塞速度很高的阶段进行的,而气阀的关闭却是在活塞已位移到接近止点位置,活塞速度已经很低的情况下进行的。气阀在启闭过程中,阀片、升程限制器及阀座都将受到交变冲击载荷作用,很容易造成磨损和破坏。根据某些关于气阀的研究文献可以看出阀片对升程限制器或阀座的冲击力的大小与以下诸因素有关:(1)阀片质量大时,冲击力大。故阀片质量轻对减小冲击力是有好处的。也可以看出用增加阀片厚度的办法来减少阀片中的应力并不一定能得到预期效果。压缩机中的气阀多采用多环窄通道气阀,阀片质量较轻、冲击力将减少,这是有利的。
(2)转速n增加时冲击力增大,且冲击频率也增加,阀片寿命将缩短。
(3)气阀的弹簧过软或者由于胶着等原因,使气阀延迟关闭,冲击力特别大,气阀易损坏。为了提高寿命需要加大弹簧力,但弹簧力过大也不太合适,因为此时不但会加大气流通过气阀的阻力损失,而且还因气阀两边的压力差不足以克服弹簧力,使阀片不能一直贴合在升程限制器上而产生振荡造成总的阻力损失增加。因此为克服这一矛盾的影响,选用变刚性弹簧是比较理想的,即弹簧力在气阀刚开启阶段较软,以后迅速变硬,以减少气阀对升程限制器的冲击;关闭时,开始很迅速,后来弹簧力迅速变小,可以减少对阀座的冲击。
(4)升程h大时,冲击力大。因此升程不宜取得过高。但升程过小,气阀阻力会增加。因此,在兼顾不致使气阀阻力过大的情况下,力求升程值小些。
(5)从气阀运动曲线图中可以看出,阀片对升程限制器的冲击速度大于对阀座的冲击速度,但前者支承面积较大,而后者的支承面积仅仅是阀片与阀座的狭窄的密封周边,故对阀座的冲击应力仍然较大,这也是它易于损坏的主要原因之一。 ,
此外,从压缩工作循环过程来看,由于膨胀过程中压力下降比压缩时压力上升来得快,因此,排出阀关闭不及时所造成的影响将会更严重一些。为此,排出阀上配备的弹簧刚性应比吸入阀的弹簧刚性大些。
阀片材料应具有强度高、韧性好、耐磨、耐腐蚀性能。
水泵气阀
气阀弹簧一般采用碳素弹簧钢,合金弹簧钢及不锈钢等材料。压缩机气阀除环状阀外,还有网状阀、碟形阀、孔阀及直流阀等。其作用原理与环状阀大体相同,但各有不同的特点。旁路式
(Port Type Unloader)
顾名思义,就是在吸气阀的旁边单独开一个旁路通道,用单独的卸荷器封闭该通道,不与吸气阀发生联系。这种卸荷器的优点就是减少了传统卸荷器对吸气阀阀片的影响,延长了吸气阀的使用寿命。
塞式
(Plug Type Unloader)
这种卸荷器、它的结构与旁路卸荷器类似,只是作用于带中心孔的Magnum阀上。卸荷器打开时,气体通过中心孔返回入口缓冲器,卸荷器关闭时,中心孔被封住,气阀正常工作。
余隙腔式
(Clearance Pocket Type Unloader)
这种卸荷器的工作原理就是在气缸的缸盖端设置了一个余隙腔,利用气体的压缩和自由膨胀来实现卸荷的。当余隙腔打开时,被压缩的高压气体一部分保留在余隙腔内,进入自由膨胀阶段,这些气体就会自由膨胀,占据了部分气缸容积,导致入口吸气量的减少,从而达到卸荷目的。当余隙腔关闭时,气缸正常工作。
1、本站所有文本、信息、视频文件等,仅代表本站观点或作者本人观点,请网友谨慎参考使用。
2、本站信息均为作者提供和网友推荐收集整理而来,仅供学习和研究使用。
3、对任何由于使用本站内容而引起的诉讼、纠纷,本站不承担任何责任。
4、如有侵犯你版权的,请来信(邮箱:baike52199@gmail.com)指出,核实后,本站将立即删除。